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CHAPTER T - ©
INTRODUCT ION

The teast mean square (LMS) adaptive antenna array {s used in
communications systems for {nterference supressfon and desired signal
tracking. It does this by adaptively weighting (both phase and
magnitude) the signals from each antenna element to minimize (in the LMS
sense) the difference between the array output and a reference sigral.
That 1{s, 1t attempts to match the output with the reference. In doing
this, it also provides the maximum signal to interference plus noise
ratio (SINR) in the array output [1].

One of the problems with the LMS array is that it cannot adequately
handle a large dynamic range of d{nputs. This problem {is linked
mathematically to the speed of response of the weights in the array.
Ideally one would 1ike to have the speed of response of the weights as
fast as possible to provide rapid mulling of interference and good
desired signal tracking. However, if the response speed of the array is
too fast, the weights in attempting to match the output with the
reference will begin to modulate the ~interfering signal with the
reference signal, If this occurs the array will no longer- distinguish
between desired and undestired signals and will not suppress the
interference. Unfortunately, the speed of response of the array 1s
proportional to the power of the incident signals. Thus, the powers of
the input signals cannot exceed a fixed level without these modulation
effects. This effectively limits the dynamic range of signals that the
array can handle. For most communications systems the dynamic range of
the desired signals is not large enough to cause problems. However, in
systems where some transmitters are close to the receiver and others are
relatively far from the receiver, the dynamic range of desired signals
may also be a problem,

To overcome the problem of 1imited dynamic range in the LMS array,
ft has been suggested [2] that each input of the LMS array be preceded
by a power inversion (PI) array [3]. The PI array has no reference
signal and for this reason is not as severely dynamic-range limited as
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the LMS array. Also, the PI array attenuates all signals which are
above a threshhold value. The objective of this approach is to
attenuate the powerful signals before they reach the LMS array and hence
avoid the dynamic range problems. We refer to these systems as cascaded
arrays.

In this report we examine the SINR of the cascaded array output.
Specifically, we wish to know if preceding each input of the LMS array
by a PI array destroys the LMS property of maximized SINR in the output.
In Chapter III we show that under fairly 1iberal design constraints the
steady state output of a “fully implemented" cascaded array is the same
as the steady state output of a stand alone LMS array (with maximized
SINR). A fully implemented N element cascaded array is one where the
LMS array has N inputs, each of which is preceded by a PI array, and
each Pl array is connected to all of the N antenna elements.

There are good reasons why one would not build a fully implemented
cascaded array. Cost and complexity are two factors which support
arguments against a full implementation. An N element LMS array
possesses N control loops if implemented at an intermediate frequency (as
opposed to baseband). A corresponding N element fully implemented
cascaded array possesses N¢+N control loops. Limiting the number of
inputs to the PI arrays 1limits the number of weight control loops
required, reducing both cost and complexity. Also, it may be desirable
to limit the number of inputs to the PI arrays in order to purposely
1imit the degrees of freedom in these array. For lack of a better word,
we call the process of reducing the inputs to the various arrays
"thinning" the cascaded array.

In Chapters IV, V, and VI the output SINR of thinned cascaded
arrays 1is examined. Chapter VI examines the output of cascaded arrays
employing a minimum number of PI control loops. In general, we find
that maximum SINR is not guaranteed for arbitrary thinned
configurations, but can in many cases be guaranteed by careful selection
of the PI. steering vectors. The steering vectors determine the
quiescent pattern of the PI arrays. The purpose of this report is to
examine the output SINR of cascaded arrays and to present the designer
with enough information so that it may be maximized.
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CHAPTER 11
BACKGROUND

Before discussing arrays in cascade we will examine a single (PI or
LMS) adaptive array. Such an arra* is shown in Figure 1. The inputs to
the array are the analytic signd18! x; to. xy present at. the respective
antenna elements. These signals are each multiplied by a complex weight
(w; to wy) and then summed to yield the array output. By defining a
vector input X :

= .1 ‘
X [:J (1)

and a vector weil ghf w

o

the output may be written as (with T denoting transpose).
XTw = w'x . ' (3)

In this report we will discuss two types of arrays, the LMS "array and
the Pl array. The difference between the LMS array and the PI array {s
the feedback algorithm used to determine the weight vector. We first
describe each of these arrays.

output =

1. Analytic signal mathematics L&] 1s a method for treating two
parameters of a signal, amplitude and phase, with one complex variable.

It offers considerable simplification of the algebra involved in
analysis and is used throughout most of this report.
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- I1.A THE LEAST MEAN SQUARE ARRAY e
“ In the LMS arfay the steady state weight vector minimizes a squared -
- error cost function Jy s given by , &t
_ Jus = E[ee] (4)

where E[*] 1s the expeciation operator, the superscript * I{ndicates
complex conjugate, and e 1s the output error given by

e =r(t) - Xw=r(t) -wx . (5)
Here r(t) is the analytic reference signal and w is the (not necessarily R
steady state) LMS weight vector. The value of w which minimizes J S
(1.¢., the stéady state weight vector) can be found analytically E? Y
differentiating Jyms first with respect to the real part of the weight ot
vector then with respect to the imaginary part of the weight vector and y

setting the two resulting equations equal to zero. Substituting
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Equ:t{:n (5) into Equation (4) and dropping the expressed dependence on
t ylelds. . e . |

T dums = ELPT - Setw - wis, 4 whew T : (6)
where t indicates coﬁjﬂg’ite transpose, Sy is the reference correlation

vector and & 1s the {input signal covariance matrix. Sy and ¢, are
defined by .

S, = E[X*r] | )
and

& = E[X*xT] . (8)
Equation (6_) can be expanded by substituting for w
where o - )

wp = Re[w] , ' (10)

wpemv, . T ()

and ) : : C

Nev (12)
This yields =~ | | S '

| dms = ELr*r] - SyPwp = 15ty - wRTSy + dwpTsy 3)
+ waTagwp + wiTowp < twpTowg + fwplowp

Differentiating Equation (13) with resbect 'to wp and setting the result
equal. to zero ylelds after some manipulation

Re[ogw] = Re[S, . 7 C(14)
The same operation with respect to wy yields
ln[.x"] = l.[5x] . (15)

Equations (14) and (15) can be combined to obtain a single complex
equation '

"o = Sy (16)

The solution to Equation (16) 1is the weight vector which minimizes the
cost function J"”ﬁ' It is also the steady state LMS weight vector. If
&y is invertible the minimizing weight vector 1s given by

-1
w8 S¢ . (17)

2. o is invertible TV there 1s nolse present on each element and the

noise 1s uncorrelated from element to element.
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Here the subscript L denotes steady state LMS. This weigit vectdr s
known - to yield maximum SINR - in the LMS array output [1]. SINR is
defined as the ratio of desired signal power to the sum of the noise
p?wer glus the interference powers. From Equation (3) the LMS output is
given by . o . .

-1 '
output = XTe, Sy . (18)

I1.B THE POWER INVERSION ARRAY
The steady state weight vector wpy for the PI array [3] is given by
-1
wpp = (I+key) 2z (19)
where k is a gain constant, I is the identity matrix, z 1is called the
steering vector, and wpy is the PI weight vector. If only noise is
present at the antenna elements (with power o2 on each element and

uncorrelated from element to element), I+k#x is diagonal with each term
on the diagonal given by 1+ko2. Under this condition Equation (19)

Wpp = TT%GZ z - . 7 ' (20)

Thus, the vector z determines the array pattern under quiescent
conditions -- hence the name steering vector.

In the rest of this report "we consider adaptive array

configurations that involve cascades of PI and_LMS arrays. We begin

with the fully implemented cascaded array.

-
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CHAPTER 111 o

THE FULLY IMPLEMENTED CASCADED ARRAY f;i

We are investigating cascades of PI and LMS arrays 1in order to gfﬁ

improve the dynamic range properties of adaptive arrays. This raises 3;u
the question: How should these cascades be connected? For example, f{s r

it necessary that each LMS input be preceded by a PI array? Must each =

PI array be connected to all of the antenna elements? We would like to =

find a configuration that does not reduce the output SINR below that SO

obtained by a single LMS array (which is the maximum obtainable SINR). )

Our purpose 1in this chapter 1s to consider first a fully implemented S
cascade. We will show that this configuration ylelds the maximum r

possible output SINR as 1long as the PI steering vectors are linearly fﬁf?

independent. In later chapters we consider how the configurations can Pt
be thinned to reduce complexity without sacrificing output SINR. -

We define an ﬁ element cascaded array to be fully implemented if
the following requirements are met:

1. There are N PI arrays.

2. A1l of the antenna elements are connected to each of the PI
arrays.

3. The LMS array has N inputs, each connected to the output of a
PI array.

Figure 2 is a block diagram of an N-element fully implemented cascaded
array. As 1n Equation (1) the fnput signal vector X is the vector of
signals present at the terminals of each antenna element. We define an
intermediate signal vector Y to be the vector of signals yq

Y a y;] | (21)
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Figure 2. A fully implemented cascaded array.

where y; is the output of the ith PI array. Note from the block diagram
that y; is also the ith input to the LMS array. :

Since there are now several different power inversion arrays we
adopt the following notation: 1let ws be the steady state weight vector
for the ith pp array. The steady state LMS weight vector remafns as w .
To f{dentify 1individual components of the weight vectors, double
subscripts are used, where the first subscript refers to the component
and the second subscript refers to the vector. That is,

" = F"} | (22)
WNi ' 0

W = [':'lj : - (23)
WNLI] - '

It will also be convenient to define a PI weight matrix W where the
columns of W are the PI weight vectors wy:

and

o

-




.......

Vll Wz XX WN - .
W= [} + + . (24)

¥;§ With this notation, the components of the vector Y are given by
o yi =wiTx = xTwy . (25)

{;5 and the vector Y can be expressed as
Yy =ulx . ‘ (26)

From the discussion in Chapter II we know that the LMS array subject to
an input vector Y will produce a weight vector w_satisfying

w =S (27)
where A i .
) oy = E[Y*YT] 7_ (28). :
an ' )
R

By substituting Equation (26) for Y into Equations (28) and (29), ¢y and
Sy can be expressed as _

and oy = Who,W (30)
Sy = Wi, . (31)
These can be substituted into Equation (27) to obtain _ ™
Wromw = wts, . o (32) f
Now, 1f W is invertible, the LMS weight vector is S@
w = H-lox-lsx . : (33) R
The output o from the cascaded array is then }i
o=Ylw . (34) Ei
Substituting Equations (26) and (33) into Equation (34) results in ;3
o = xTa, s, (35) i

We see that the output of the cascaded array as expressed 1in
Equation (35) 1s exactly the same as the output from a single LMS array '
(Equation (18)). Thus, as long as the matrix W remains invertible, the -
output SINR of the cascaded array is maximized. '

Since this result depends upon the invertibility of the PI weight

matrix W, we now ask the question: What can be done to insure the
invertibi1ity of W? To answer this, note that W is invertible if the
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column vectors wj (the columns of wi are linearly independent. That is,

if there is no set of constants {bj} other than the null set for which

bywy + bzﬁz + ees +bywy =0 (36)

then the column vectors wi are independent and W 1is {invertible.
Multiplying this equation by (I+key) yields

by (1+k @y )wy + bo(I+kdy)wo +
1 x W1 2 x W2 (37)

. +“.o.o + b"(l"‘k.x)"" =0 i
and from Equation (19) |

bIZI + 5222 + oo + bNZN =0 (38)

where z4y is the steering vector for the ith p1 array. Equation (38) .is
the 1linear independence relation for the vectors zj. Thus, the PI
weight vectors wy are linearly independent if the Pl steering vectors z;
are linearly independent. This provides a convenient  method for
guaranteeing the invertibility of the matrix W. By defining a matrix 2
whose columns are the steering vectors z4,

Z1 Z9 eee 2 '
7 [+1 R +"] o (39)

one can insure the linear independence of the vectors z; and w; by
choosing the 2zj such that the matrix Z is non-singular. Since the
steering vectors z4y are parameters which are chosen by the array
designer, it is a simple task to insure the invertibility of W. ;
~ Thus, we have shown that the fully implemented array yields maximum
array output SINR as long as the steering vectors in the PI arrays are
linearly independent. In the next chapters we consider how to thin the
array without reducing SINR below its maximum value. )

-10 -
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CHAPTER IV
THINNING BY REMOVAL OF PI ARRAYS

Consider for a moment the fully implemented cascaded array of
Figure 2. There are two ways that this configuration can be thinned.
One way is to remove inputs from one or more of the power inversion
arrays. The second way is to remove inputs (and the corresponding PI
arrays) from the LMS array. In this chapter we consider this latter
method. We will: show that eliminating Pl arrays in this manner causes
the output SINR to be reduced. Thinning via the first method will be
considered in Chapters V and VI.

Suppose we are given an N-element fully implemented cascaded array
as in Figure 2 .and we remove the Nth pI array. We still retain N
antenna elements, and each of the remaining Pl arrays has N f{nputs as
before, but the LMS array now has only N-1 inputs. Such a configuration
is shown in Figure 3a for the case where N = 3. Recall that the matrix
W of PI weight vectors was of dimension N x N for the fully implemented
cascade, If a similar matrix W' 1is defined for this thinned
configuration

W= ‘['4'1 i :"'1] - (40)

we observe that W' {is of dimension N x N-1 and hence not invertible.
Thus, the guarantee for maximum output SINR which was developed in
Chapter III 1s not achieved. This does not imply that maximum SINR in
the output is not possible -- only that it is not guaranteed.

The removal of the Nth Pl array 1in a cascade {s equivalent
mathematically to a fully implemented cascaded array with the Nth
component of the LMS weight vector w; constrained to zero. For example,
the cascaded array of Figure 3a (wh*ch has the 3rd Pl array removed) is
equivalent to the fully implemented cascaded array of Figure 3b (which
has the 3rd component of w_ constrained to zero). The configuration of

-11 -
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Figure 3b s useful because it is easily analyzed with techniques of
constrained minimization and because it permits the array behavior to be

interpreted with geometrical arguments.

As described in Chapter I1 the steady state. LMS ueight vector

minimizes a square error cost function
JLMS = E(e"e] = E[|e|2] .

There are some differences, however, between the case considered 1n o

Chapter 11 (a solitary LMS array) and the
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First, the input signal vector to the LMS array is now Y (instead of X),
so the output error is

e=r-wyYs=pr.Yy (42)

and the cost function J becomes (in a manner analogous to the
derivation of Equation (k??

Jims = E[r*r] - sytw - wis, + wtoyw . (43)
LMS y Y by

Also, in this case the steady state LMS weight vector 1is the weight
vector which minimizes J s subject to the constraint that the Kth
weight component is zero. §1nce we are working in complex weight space,
both the real and imaginary parts of the Nt“ component are constrained.
The previous case was one of unconstrained minimization.

There are several comments to be made about the cost function J%"f.
First, JyMs is a Hermitian form3 and is therefore real for all possible
weight vectors w. Also, J M5 has only one extremum and that point is a
minimum since the error can be increased arbitrarily by increasing w.
Finally, JyMs as a function of the weight vector w is a quadratic
hypersurface in a weight space of dimension 2N. If Jyus 1s plotted
versus the real or imaginary part of any two components of the weight
vector w (i.e. versus any two of the 2N dimensions) a bowl shaped

vadratic surface is obtained. The minimizing LMS weight vector w¥
?unconstrained) is given by (in a manner analogous to the derivation o
Equation (4))

W= es, (44)

where and Sy are given by Equations (28) and (29). The weight vector
wp results in the minimum possible value of the cost function J ys - the
point at the bottom of the bowl. The shape of the quadratic
hypersurface and the minimum value of JyMs (Jmin) are both functions of
the intermediate signal vector Y (which %n turn 1s a function of the
fnput sfgnal vector X). The minimum value of Jyus can be calculated by
substituting w; (Equation (44)) for w in Equat1on"i43) to obtatn after
some manipulation i

Inin = ELr*r] - syteysy (45)
By solving Equation (44) for Sy

3. The Hermitian form Is the complex analog of the quadratic form of
real space., If the problem 1s cast in real notation J M5 becomes a
quadratic form and we obtain a real weight vector with 2N components.
The real and 1imaginary parts of the complex weight components each
become individual components of the weight vector in real space.
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Sy = &yw (46)
and Equation (46) for E[r*r]

ECr*r] = Jpin + SyteySy (47)
and substituting these relations into Equation (44), one obtains

JLMs = Imin *+ (W - w)Tey(w - w) . (48)

Equation (49) is useful because it clearly shows the Hermitian form of
Jims and the penalty one pays for the use of weights other than wj.
S*nce oy 1s a positive definite matrix, the product (w - w )Tey(w - w)
will always contribute positively to Jyms. That is, the only way that
Jmin can equal J M5 is if w equals w, forcing the product term to zero.
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Figure 4. The LMS cost function with a constraint.
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ﬁEQl Figure 4 is an example which shows the cost function J s and the
L effect of a single constraint. Here the cost function J ns 1s plotted v
i:g! versus Re[wa] and Im[wy], where w, and wp are two components of the
5 complex we?ght vector w. In th?s example we constrain Re[w,] to zero.

The shaded region in Figure 4 is the plane defined by the constraint
equation

g Re[wa] =0 . (49) :

PR S .

In this hypothetical case the weight vector will seek the minimum point
L of the intersection of the bowl and the constraint plane. From Equation
o (48) the constrained minimum will always be larger than the
o unconstrained minimum Jpjn. Physically, the larger value of Jj yg means
that the array output does not match the reference as well as *t would
without the constraint. In other words, the array error signal has
increased. For constraints of this type" the increased error is due to
increased noise and {interference 1in the output. This results in
degraded output SINR.

. ettt desmcdin,

Now consider the effect of constraining the Nth LMS weight j
component to zero by totally removing the Nt th p1 array in the cascade. -
This situation is similar to that of Figure 4 except now we have two
constraints -- both the real and the imaginary parts of the weight
component are constrained to zero. As in the example above both the
output error and the output SINR will increase. The conclusion of this
argument is that one cannot remove Pl arrays from a cascaded array
without reducing the output SINR.

-

-

R T i Tt Y
TR I

L"' 4, 1t is possible to Tncrease the error without reducing the output
T SINR. This can be done by scaling all of the weight components by a
SEp common factor. This scales the output, causing a mismatch between the
output and the reference signal and increasing the error. The output

%Qf SINR, however, remains the same. Changing only a single component (as

o in constraining a component to zero) will in general increase the error

o with a corresponding degradation in output SINR.
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CHAPTER V
THINNING BY REMOVAL OF CONTROL LOOPS IN THE PI ARRAYS

Recall that we are discussing ways of thinning the cascaded array
without degrading the array's output SINR. Chapter IV discussed the
removal of control leops in the LMS array. In this chapter we discuss
the removal of control loops in the Pl arrays. Consider the N-element
fully implemented cascade of Chapter IIl. Here, each PI array had all N
antenna elements as inputs. One way of thinning this array would be to
remove an input from one of the PI arrays. For example, 1in a three
element cascaded array we could remove the third element from the third
PI array. This results in the configuration of Figure 5. Along with
the f1input that we remove, we also remove the corresponding weight
control loop, including the weight vector component, the steering vector
component, and all associated hardware. In this chapter and in Chapter
VI we examine the effects of such configurations on the output SINR.
That 1s, can the fully implemented cascaded array be thinned in this
manner and still retain maximal SINR in the output? As 1in the fully
implemented array of Chapter 111, we will find that the answer to this
question depends upon the choice of steering vectors used in the PI
arrays.

To investigate thinning the cascaded array in this manner we again
use the method of constraints. Removing the jtN input to a PI array is
equivalent to constraining the jth weight vector component to zero.
Recall that maximum SINR for the fully implemented cascade is guaranteed
if the matrix W 1is 1invertible. This will be true for these
configurations also. The constraints force certain elements of W to,
zero. For the example of Figure 5 the matrix W is

w11 ¥12 W13
L IE'ZI w22 '23] (50)
w31 w32 0

The elements which are forced to zero by the constraints correspond to
the control 1loops removed from the PI arrays. As 1in the fully
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Figure 5. A cascaded array with a thinned power inversion array.
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implemented éase. the 1n§erf1bilit& of W is not obvious by inspection.
However, 1in many cases the f{invertibility of W can be determined by

examining the steering vectors zy. This will be done in this chapter. ?3
Before proceeding further, however, we pause to develop the mathematics Q}f
of the PI array with constraints. ey
Consider a 3-element PI array. From Equation (19) the Pl weight -~

vector 1s given by

a1 212 213| %11 214 '

a1 222 a23{ w24 | = |z24 (51)

231 232 233 ¥3 z3

SR

where the agk are the elements of the matrix (I+keéy). Suppose the third
input and control loop is now removed, so that the array is reduced to a
2-element array. The weight vector is then given by

211 212 [m 111] , —
[021 azzl w21] = 221 (52) -

ia The components of wy are found by Cramer's rule to be

o ‘ .' t\
‘5'.1 . . B
\ .

o w1y = 822211 - 312224 (53)
el - a11322 - a212)2 —

. P WIS
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and ey
11224 . 812)§ (54) Fat
¥2i = a11azz - 321312 3

This answer is also obtained by solving the original system (Equation Ef?
(51)) with the constraint that w3; = 0. Equation (51) then becomes o

a1 a12 a3 mii]  [2ue
a1 agz az3|(waq| = 224, (55) o
a3y a3z a3zl |0 234 e

where the prime on 281 indicates that this component may differ from the
component 237 1in Equation (51). For this equation to have a solution
(1.e. to be consistent) z3;' must be given by '

z3i' = agwyq + azowpy (56)

where wi and wz{ are given by Equatfons. (53) and (54). When these are
substituted, z3;' is found to be

231" - 231(822214 «-a12231) + a3zpfaygzay - 821211) . (57)
a11322 - 221212

Equation (57) shows that the value which z3;' must have in order” to

force w3 to zero {s dependent upon the input signal environment. This 331

is observable in the dependence upon the ajy. Thus, unlike the other Lo

steering vector components, z3{' 1s not a constant. Should the input e

environment change, z3¢{' must also change to maintain w3y at zero. For i

lack of a better work, we call this component a "floating” component of b

the steering vector. ;Cj

In a manner analogous to the previous developments, one can write 533

(T+koy)wy = z4° (58) L

v

where wi has components constrained to zero and 24' has corresponding S

floating components. By defining a steering vector mairix Z' with e

columns composed of the steering vectors 2¢°, =

[ s

21. Zz' (X X2 4 ' r:

Z' = [} + oy (%9) ity

Equation (58) can be extended to ' jfi

. b

B where W now has constrained components and Z' has floating components. o

o Since (I+key) 1s non-singular, W 9is invertible {f and only 1f Z' is o
o invertible. This, is the fundamental result of this chapter. It permits :
;; us to examine the invertibility of W by examining the matrix- 2'.. In the ;

- next chapter we use this result to examine several configurations of the -—

=B cascaded array. L
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CHAPTER VI
'SPECIAL CONFIGURATIONS

In the previous chapter a mathematical base was developed for
examining thinned configurations of the cascaded array. In this chapter
we apply these and other techniques to some special configurations which
may be of interest. We have two goals. First, we would 1ike to find
the minimum configuration which still maximizes the output SINR., By
minimum configuration, we mean the configuration with the least number
of PI control loops. This configuration is {important because it has
minimum cost and complexity. Secondly, we wish to present a broad class
of configurations which yield maximum output SINR, although they are not
necessarily minimum. :

VI.A THE MINIMUM CONFIGURATION

The simplest thinned array 1{s one where only one element is
connected to each Pl array .as in Figure 6. Normally, when one speaks of -
arrays, one implies that there is more than one element. The PI arrays
of Figure 6 are single element "arrays". We choose to begin with this
case as a tutorial example, however, because it {s the simplest case.
We show here that this configuration gives maximum output SINR.

To see this, we examine the PI weight matrix W. For this
configuration, W 1s a diagonal matrix and is given by

)
v |

w11
' w22
W= . ) (61)

"N,
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Its determinant will be non-zero 1f each of the diagonal elements are
non-zero. Each of these in turn {s given by tl.e scalar equation (from
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- X PI
ARRAY
#*1
g Y
- ARRAY ~I2 o] us
| #2 ¢ |array [—*0
. ) y
2 . ° n
5 L4 ®
: .
' I Xp PI
- ARRAY
3 #N
\' Figure 6. A cascaded array with one element Pl “arrays"
% Equation (19))
wit = 2q1/(14ke44) (62)
% where ¢i§ = E[x4*x4]. Since ¢45 can never go to infinity, one can
- fnsure wyy 1s never zero by choosing the steering vector component 2z
, non-zero, If this is done for each PI control loop, the matrix W 1s
X non-singular and the configuration is guaranteed to yield maximized SINR
in the LMS output.
E Although the configuration of Figure 6 will maximize SINR, One
s would probably not build such an array. The reason is that none of the
PI1 "arrays” have the capability of nulling ar interfering signal. An N-
element array has the capability of nulling N-1 signals. If one were
designing a cascaded array for an environment of interfering stignals,
W one would probably put enough elements in the PI arrays to provide for
- nulling of the interference. For example, 1f one interfering signal
- were expected, a cascaded array composed of two element PI arrays would
= be desired. The question would then become: Can a configuration be
i found using two element PI arrays which has maximum output SINR? One
such configuration is shown in Figure 7. This configuration was found
: - 20 -
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by trial and error. We show below that with proper choice of PI
steering vectors it also yields maximum output SINR. We will see later
that the configuration 1is not unique. There are other equivalent
configurations.

F

X Pl

ARRAY

P1

ARRAY
#2

F

ARRAY

=

A Pl y2 p—
&,__: ARRAY ys o] wms |

#3 -

P

PI
Xe ARRAY
#4

#N

|

Figure 7. A cascaded array with two element PI arrays.

As in the previous case, we examine the output SINR of this
configuration by examining the {nvertibility of the matrix W, or
equivalently, the 1inear independence of the columns of W. For the
array of Figure 7, W is given by

<21 -
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w11 ¥12
w21 w22 :23 .
33 %34
W= Wiy - (63)
. w“'l .N
wN, N

We will argue along the following 1ines. First, we will show that
two conditions are sufficient for guaranteeing the linear independence
of the columns of W. These are (1.) the first two columns of W must be
linearly independent and (2.) all diagonal elements in the remaining
columns must not go to zero. We will then show how a designer can
insure that the conditions are met.

To see that the two conditions are sufficfent for the 1linear
independence of the columns of W, suppose that both conditions are true.
Note that the first two columns of W do not have a third component.
Since they do not have a third component, no weighted sum of these
columns can produce the third column, which has a non-zero third
component. Mathematically speaking, there is no set {by,bp} for which

w w
bl["’%i] + bz["g] = [323] . (64)
0 0 w3

Thus, all three columns are 1inearly independent. Similarly, no
weighted sum of the first three columns can produce the fourth column,
and so on. Therefore, given the independence of the first two columns
and non-zero diagonal elements in the remaining columns, all of the
columns of W are linearly independent.

We now show how a designer can guarantee that the first condition
(i.e., the 1linear dindependence of the first two columns) is met. The
wefght components of the first two PI arrays satisfy the equation

(T1+kdy ) 'W" = Z¢ (65)
where (I+kdy)' is the 2 x 2 upper left block of (I+key),
W = [W11 Y12
w21 W22 (66)
and
v « [711 21
221 222 (67)

Note that (I+kdy)' 1s a Hermitian, positive definite, non-singular
matrix. Therefore, W" 1is 1invertible and 1its columns 1inearly
independent if Z* 1is invertible. Since the choice of steering vectors
is a designer's option, Z" can be chosen invertible, guaranteeing the
independence of the columns of W" . The columns of W" when augmented
with zeros are the first two columns of W. Hence, by choosing Z"
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invertible, the independence of first two columns of W is guaranteed.

The ‘second condition (insuring that the remaining diagonal elements L
never vanish) can also be met by proper choice of the steering vectors. v
In any PI array it is possible to prevent any given weight component :
from becomning zero. This can be done by choosing the steering vector
component which corresponds to the given weight component to be non-zero
and choosing all other steering vector components (those that correspond
to existing control loops) to be zero. A proof of this statement s )
given in Appendix I. Thus, it is possible for a designer to guarantee ’
that the remaining diagonal components of W never vanish. R

We have shown above that the invertibility of the matrix W and
hence maximum output SINR of this cascaded array configuratfon is
guaranteed by proper choice of the steering vector components. We also -]
remarked earlier that the configuration 1{s not unique. We now show d
this. Suppose we take the configuration of Figure 7 and we renumber the o
antenna elements by interchanging the labels of elements one and three.
That is, we call the signal from the first element x3 and the signal
from the third element xq. The actual circuitry is not changed, so the
output SINR remains maximized.

The new weight matrix for this configuration (denoted by primes) is T
0 0 w3 wy' ]
w21' w2p' w23’ 0
w3y’ w32' 0 0 Jo ]
W' =10 0 was' was' (68) R
wss' , o
! NN --.;‘_‘%
or _ ."_-'.1
[0 0 w33 w3g -
w21 w22 w23 0 T
wii w120 O
0 0 0 wgq wss.
W' = wsg (69)
[} w"'l." [
! WN,N —
where the w€1 (unprimed) are elements of the matrix W (Equation (63)).
An examination of W' shows that is is 1dentical to W except that the »
first and third rows have been interchanged. In a similar manner the ey

outputs of the PI arrays could be renumbered. This would result in a
weight matrix with columns interchanged. The net result of this is that
any row or column i{nterchange of the matrix W 1is equivalent to
renumbering the inputs or outputs of the Pl arrays.

-23 -
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Thus, the invertibility of any weight matrix W which can be
permuted to the form of Equation (63) by row and column interchanges can
be guaranteed by the proper choice of steering vectors. The matrices
which fit this class have the following features:

1. Each of the N columns possess two weight components.

2. Each of the rows except two possess two weight components.
3. One row has one weight component.

4. One row has three weight components.

This defines a class of cascaded - arrays which are ‘“minimum”
configurations and which maximize SINR in the output. These arrays have
the following characteristics (corresponding to the above
characteristics of the weight matrix):

1. Each PI array has two inputs.
2. Each antenna element except two 1s an input to two PI arrays.
3. One antenna element 1s an input to only one Pl array.

4. One antenna element is an input to three PI arrays.

VI.B GENERAL CONFIGURATIONS

The minimum configurations of Part VI.A, composed of two element PI
arrays, have the capability of nulling one strong jammer. It may be
desirable to incorporate multi-element (more than two) Pl arrays in the
cascaded array to provide for the simultaneous nulling of more than one
jammer. It is possible to do this without resorting to the fully
implemented cascaded array of Chapter III. This section presents one
possible way of doing this while still maintaining maximized SINR in the
array output. Our purpose  is not to endorse this configuration
(although it 1s reasonable for the scenario given above) but rather to
present the methods used to examine it.

Recall that in Chapter V we obtained the relation
(I+koy )W = 2° (70)
where Z' is the matrix of steering vector components with floating
components. Since (I+key) 1is always invertible, W is tnvertible {f Z
is invertible. One problem which occurs 1s the unpredictability of the

floating component terms 1in the matrix Z'. These terms are dependent
upon the input signal scenario and may (for certain i{nput conditions)

- 24 -
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assume values which result in a singular Z'.
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Consider the special case where 7' is upper triangular

Y 4 * * o o o ¥
0 2392 * *

' = |0 0 233 e oo ¥ (71)
6 6 6 e o o iN’

with each diagonal element non-zero. The determinant of this matrix {s
the product of the diagonal elements and is therefore non-zero. This
configuration is interesting because it permits the removal of PI
control - loops which correspond to the superdiagonal elements of Z' (the S
asterisks of Equation (71)). This introduces floating component terms N

into these elements, but the determinant remains non-zero and hence the ;??

matrix remains invertible. Control 1loops may not be removed from R

positions which correspond to diagonal or subdiagonal elements of Z'. il

This would introduce unpredictable floating component terms into the S

diagonal or subdiagonal elements and render the invertibility of Z' ;l;

unpredictable. As in the previous case, row and column interchanges may .

be used to transform a given matrix into triangular form in order to 2

show invertibility. 9

An example of a cascaded array which fits this matrix s the array$ PR

of Figure 8. This array has the weight matrix ;i:

w110 0 O w

Wa|wopwp0 O e

W3] W32 W33 W34 (72) i

W41 Wa2 W43 w4 o

and the matrix of ‘steering vectors :;7,

211 % * i

' = 251 222 * ¥ ]

23] 232 233 234 (73) e

241 242 243 24 _ o

Here the asterisks represent floating steering vector components. By R

choosfng R

211 = 222 = 233 = 244 = 1 (74) it

and 4 ' v

221 =231 =241 =232 = 242 = 243 = 0 (75) —

5. This array 1ncorporafe§ﬂﬁl arrays with different degrees of freedom. At

One Pl array can null three jammers$, one can null two jammers, and the o

remaining two Pl arrays can each null a single jammer. —_—
- 25 -
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Figure 8. A cascaded array derived from an upper triangular matrix Z'. :;;
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.-":;q
the matrix Z' becomes e
i ]
1 * % * r
7's 0 1 *» +» 1
0 0 1 238 (76) "
0001
By choosing the steering vector components in this way, the matrix Z' is

non-singular regardless of the values of the unspecified components (z3
and the floating components (asterisks). Thus, the array of Figure 3
produces maximal SINR. However, the configuration is not the important
issue here. The important point is the triangular form of the matrix
1'. This form allows one to {nvestigate a great number of
configurations for maximum output SINR.
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CHAPTER VII
CONCLUSIONS

The cascaded adaptive arrays discussed in this report are composed
of an LMS processor with each LMS input preceded by a power inversion
(P1) array. It is a characteristic of the LMS ‘array that the speed of
response of the LMS weights are proportional to the input signal power.
Powerful signals can cause the LMS array to respond too fast, resulting
in  undesirable : modulation effects 1in the output. The objective of
cascading adaptive arrays s to use the inversion characteristics of the
PI arrays to limit the finput power to the LMS section, thereby
eliminating these modulation effects.

The LMS array (when used by {tself) possesses the property of
maximizing the steady state output SINR. Preceding each LMS input with
a PI array may or may not destroy this property. This report presents
several techniques for guaranteeing maximum SINR 1in the output of a
cascaded array. In a fully implemented cascaded array each Pl array is
connected to the full set of antenna elements. For this configuration
maximized output SINR 4{s guaranteed by choosing the steering vectors
linearly independent. It is also possible to have maximum output SINR
from cascaded arrays where each P1 array is connected to only a subset
of the antenna elements. However, this can be accomplished only through
further restrictions on the PI steering vectors.

Maximized output SINR is a desirable '‘property. With the techni-
ques presented in this report it is possible to choose array configura-
tions which have this property. In addition to the output SINR, other
factors should be considered in choosing a cascaded array configuration.
These include transient behavior, weight Jjitter, and dynamic range of
the signals and weights throughout the system. These topics are either
the subject of current research or are proposed for future examination.
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| | APPENDIX 1 3

~ INSURING A NON-ZERO WEIGHT ‘COMPONENT IN PI ARRAYS :"

In Chapter V we stated that is {s always possible to prevent a

R~ weight component wjq of a PI weight vector wy from going to. zero. This

:: is shown below. ' .

o As noted previously, there are two viewpoints for considering the

removal of PI control loops. One is the constraint viewpoint, where the 7]

o removed control Toops are imagined to exist but with  their weight - 1

0 components constrained to zero. The other viewpoint treats the thinned ;_;

! P1 array as a standard Pl problem but with reduced dimensionality. For )

= example, 1if we start with an N element PI array and remove an input and

. corresponding control loop an N-1 element PI array remains. In this o

r appendix we adopt this second viewpoint. ,‘

‘123;:- Consider the Pl weight equation . ,’

(Iokodwy =2y - RV B

where (I+k&y), wy, and 23 are perhaps of reduced dimensfonality. This '.:'ij

equation may be solved for any'component of wy by the use of Cramer's ]

e rule. This yields an equation of the form ' 5

""“ wij = Det (1+ko,)'/Det (1+koy) _ (A-2) R

; where (I+k#y)' is the matrix (1+ke,) with 1ts jtR column replaced by the 1

b steering vector 2zj. The numerator of Equation (A-2) can be expanded ¢

3 ;4 about the column vector z4 to yield )

+1

o wiq = (-I)Jv [z1481 - 22982 + «..]/Det(I+key) _}

o T - (A-3) <]

where A are subdeterminants of (I+ke,). Note the following facts: y
%":
<
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1. (I+key) is a positive definite matrix so Det(I+ke,) > O.

2. With the exception of Aj, each of the other A; are determinants
:ffingn-ﬂernltian matrices which may or may not be positive
efinite.

3. Ag is the determinant of a Hermitian submatrix of (I+kéy) which
11 positive definite.

Since Aj 1s greater than zero, one way of guaranteeing that wjq never
goes to zero 1s to pick zj{ non-zero and all other components of z4
equal to zero.

To see this, consider the following example. Suppose we have a
four element PI array and we wish to i{nsure that wyy, the second
component of the weight vector wy, never goes to zero. e Pl weight
equation is

311 312 313 a4 [v14 214 :

221 322 223 a4 |w24 z2¢ (A-4)
a3] 232 a33 a3g||w3¢ 234

a4] 242 243 244] [way 24

where the'a'k are the elements of (I+key). Solving Equation (A-4) for
the second Component of wy with the use of Cramer's rule results fin

211 214 313 214 A
221 Z2{ 323 224 (A-5)
a3) 23{ 233 234
waq =|231 Za4 223 244
X

Since the denominator 1s the determinant of a positive definite matrix,
it can never go to zero. Therefore, insuring that wyq never vanishes
amounts to tnsuring that the numerator of Equation (A-5) never vanishes.
Expanding the numerator about the second column results in

wai = = 21181 + 22147 - Z3143 + Zaihg (A-6)
Det [T+ke, )
where the subdeterminants A; are given by
221 323 a4 a]1 313 a4
84 = a3 233 a3y 82 = |a31 233 a34 (A-7)
341 243 244 241 243 344
-3 -
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a1] 313 214 a1 213 214 (A-7) e
A3 = |ag) 223 a4 84 = |821 223 224 —

4] 243 244 23] 233 234

Notice that of all the Ay, only Ap is the determinant of a Hermitian
submatrix. Ay is, in fact, the determinant of a 3 x 3 submatrix of the
form (1+k#y), and so is non-zero. Thus, to guarantee that wpq never
vanishes, we choose 234 to be non-zero and all the other components of
the vector z to be zero.

This same phenomenon occurs for the general case. In general, to
insure that a component wiji of a weight vector wy never goes to zero,
pick zj1 non-zero and all cogponents of the steering vector z4 zero.







